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Abstract. We present a newly developed reduced-order biogeochemical flux model that is complex and flexible enough to

capture open-ocean ecosystem dynamics, but reduced enough to incorporate into highly resolved numerical simulations with

limited additional computational cost. The reduced-order model, which is derived from the full 56 state variable Biogeochem-

ical Flux Model (BFM56; Vichi et al. (2007)), follows a biological and chemical functional group approach and allows for the

development of critical non-Redfield nutrient ratios. Matter is expressed in units of carbon, nitrogen, and phosphate, following5

techniques used in more complex models. To reduce the overall computational cost and to focus on open-ocean conditions, the

reduced model eliminates certain processes, such as benthic, silicate, and iron influences, and parameterizes others, such as the

bacterial loop. The model explicitly tracks 17 state variables, divided into phytoplankton, zooplankton, dissolved organic mat-

ter, particulate organic matter, and nutrient groups. It is correspondingly called the Biogeochemical Flux Model 17 (BFM17).

After providing a detailed description of BFM17, we couple it with the one-dimensional Princeton Ocean Model (POM) for10

validation using observational data from the Sargasso Sea. Results show good agreement with the observational data and with

corresponding results from BFM56, including the ability to capture the subsurface chlorophyll maximum and bloom intensity.

In comparison to previous reduced-order models of similar size, BFM17 provides improved correlations between model output

and field data, indicating that significant improvements in the reproduction of in situ data can be achieved with a low number

of variables, while maintaining the functional group approach.15

1 Introduction

Biogeochemical (BGC) tracers and their interactions with upper-ocean physical processes, from basin-scale circulations to

millimeter-scale turbulent dissipation, are critical for understanding the role of the ocean in the global carbon cycle. These

interactions cause multi-scale spatial and temporal heterogeneity in tracer distributions (Strass, 1992; Yoder et al., 1992; Jr.

et al., 2001; Gower et al., 1980; Denman and Abbott, 1994; Strutton et al., 2012; Clayton, 2013; Abraham, 1998; Bees, 1998;20

Mahadevan and Archer, 2000; Mahadevan and Campbell, 2002; Levy and Klein, 2015; Powell and Okubo, 1994; Martin et al.,

2002; Mahadevan, 2005; Tzella and Haynes, 2007) that can greatly affect carbon exchange rates between the atmosphere

and interior ocean, net primary productivity, and carbon export (Lima et al., 2002; Schneider et al., 2007; Hauri et al., 2013;
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Behrenfeld, 2014; Barton et al., 2015; Boyd et al., 2016). There are still significant gaps, however, in our understanding of how

these biophysical interactions develop and evolve, thus limiting our ability to accurately predict critical exchange rates.25

Better understanding these interactions requires accurate physical and BGC models that can be coupled together. The exact

equations that describe the physics (e.g., the Navier–Stokes or Boussinesq equations) are often known and physically accurate

solutions can be obtained given sufficient spatial resolution and computational resources. Due to the vast diversity and com-

plexity of ocean ecology, however, even when only considering the lowest trophic levels, accurately modeling BGC processes

can be quite difficult. Put simply, there are no known first-principles governing equations for ocean biology.30

As such, two different approaches to modeling BGC processes are often used when faced with this challenge. The first is to

increase model complexity and include equations for every known BGC process. Often, these models include species functional

types or multiple classes of phytoplankton and/or zooplankton that each serve specific functional roles within the ecosystem,

such as calcifiers or nitrogen fixers. The justification for this approach is that particular phytoplankton and zooplankton groups

serve as important system feedback pathways, and that without explicit representation of these feedbacks, there is little hope of35

accurately representing the target ecosystem (Doney, 1999; Anderson, 2005). In many cases, these models also contain variable

intra- and extra-cellular nutrient ratios, which are important when accounting for different nutrient regimes within the global

ocean and species diversity of non-Redfield nutrient ratio uptake (Dearman et al., 2003).

Although these more complex models are typically highly adaptable and are often able to capture vastly different dynamics

than those for which they were calibrated (Blackford et al., 2004; Friedrichs et al., 2007), they contain many more parameters40

than their simplified counterparts. Moreover, many of the parameters, such as phytoplankton mortality, zooplankton grazing

rates, and bacterial remineralization rates, are inadequately bounded by either observational or experimental data (Denman,

2003). Because of the increased complexity of such models, it is also often difficult to ascertain which processes are responsible

for the development of a particular event (e.g., a phytoplankton bloom), and so these models can be ill-suited for process studies.

Lastly, while these highly complex models are regularly used within global Earth System Models (ESMs), they are typically45

prohibitively expensive to integrate within high-fidelity, high-resolution physical models at submesoscales, such as those used

to enhance fundamental understanding of subgrid-scale (SGS) physics in ESMs and to assist in the development of new SGS

parameterizations (Roekel et al., 2012; Hamlington et al., 2014; Suzuki and Fox-Kemper, 2015; Smith et al., 2016, 2018).

In broad terms, the second BGC modeling approach is focused on substantially decreasing model complexity and severely

truncating the number of equations used to describe the dynamics of an ecosystem. Such approaches include the well-known50

nutrient-phytoplankton-zooplankton-detritus class of models. These models have significantly fewer unknown parameters and

can be more easily integrated within complex physical models. Their simplicity also enables greater transparency when attempt-

ing to understand the dominant forcing or dynamics underlying a particular event. While they are often capable of reproducing

the overall distributions of chlorophyll, primary production, and nutrients (Anderson, 2005), such simplified models have been

shown to under-perform at capturing complex ecosystem dynamics, and often struggle in regions of the ocean for which they55

were not calibrated (Friedrichs et al., 2007).

Although both of these general BGC modeling approaches have their respective advantages, particularly given their vastly

different objectives, the disconnect between reduced-order BGC models used in small-scale studies and the more complex
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BGC models used in global ESMs poses a problem. In particular, the difficulty in directly comparing the two types of models

makes the process of “scaling-up” newly developed parameterizations or “downscaling” BGC variables within nested-grid60

studies much more challenging. This motivates the need for a new BGC model that is reduced enough to be usable within

high-resolution, high-fidelity physical simulations for process studies and parameterization development, but is still complex

enough to capture important ecosystem feedback dynamics, as well as the dynamics of vastly different ecosystems throughout

the ocean, as required by ESMs.

To begin addressing this need, here we present a new reduced-order, 17 state-variable Biogeochemical Flux Model (BFM17)65

obtained by reducing the larger 56 state variable Biogeochemical Flux Model (BFM56) developed by Vichi et al. (2007). Most

high-fidelity, high-resolution physical models are capable of integrating 17 additional tracer equations with limited additional

computational cost. Following the approach used in BFM56 (Vichi et al., 2007, 2013), a biological and chemical functional

family (CFF) approach underlies BFM17, permitting variable non-Redfield intra- and extra-cellular nutrient ratios, and matter is

exchanged in the model through units of carbon, nitrate, and phosphate. Most notably, BFM17 includes a phosphate budget, the70

importance of which has historically been under-appreciated even though recent observational data has indicated its potential

importance as a limiting nutrient, particularly in the Atlantic Ocean (Ammerman et al., 2003). To reduce model complexity,

we parameterize certain processes for which field data are lacking, such as bacterial remineralization.

In the present study, we outline, in detail, the formulation of BFM17 and its development from BFM56. We couple BFM17

to the one-dimensional Princeton Ocean Model (POM) and validate the model for open-ocean conditions using observational75

data from the Sargasso Sea. We also compare results from BFM17 and the larger BFM56 for the same open-ocean conditions.

As a result of the focus on open-ocean conditions, further assumptions have been made in obtaining BFM17 from BFM56,

such as the exclusion of any representation for the benthic system and the absence of limiting nutrients such as iron and silicate.

It should be noted that the primary focus in the present study is to demonstrate the accuracy of BFM17 when compared

to results from observations and BFM56; as such, here we only consider one open-ocean location (i.e., the Sargasso Sea).80

However, the correspondence between BFM17 and the more general BFM56 provides confidence that the reduced model will

also prove effective at modeling other ocean locations and conditions, and exploring the range of applicability of BFM17

remains a subject of future research. We also emphasize that relatively limited calibration of BFM17 parameters has been

performed in the present study. Most parameters are set to their values used in the larger BFM56 (Vichi et al., 2007, 2013), and

optimization of these parameters over a range of ocean conditions is another important direction of future research.85

Finally, we note that other reduced-order BGC models have been calibrated using data from the Sargasso Sea, such as those

developed in Levy et al. (2005), Ayata et al. (2013), Spitz et al. (2001), Doney et al. (1996), Fasham et al. (1990), Fennel

et al. (2001), Hurtt and Armstrong (1996), Hurtt and Armstrong (1999), and Lawson et al. (1996). However, each of these

models employs less than 10 species and none uses a CFF approach. Although some of these models employ data assimilation

techniques (e.g., Spitz et al. (2001)) and produce relatively accurate results, most leave room for improvement. With a minimal90

increase in the number and complexity of the model equations, such as those associated with tracking phosphate in addition

to carbon and nitrate, and including both particulate and dissolved organic nutrient budgets, we postulate that a significant

increase in model accuracy can be achieved over previous reduced-order models. Additionally, with this increase in model
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complexity, the disparate gap between the complexity of BGC models used in small- and global-scale studies is reduced,

thereby simplifying up- and down-scaling efforts. This last point is emphasized here by the good agreement between results95

from BFM17 and BFM56.

In the following, the zero-dimensional (0D) BFM17 model is introduced in Section 2. In Section 3, BFM17 is coupled to the

one-dimensional (1D) POM physical model. A discussion of the methods used to calibrate and validate the model with field

data collected within the Sargasso Sea is presented in Section 4. Model results, a skill assessment, a comparison to results from

BFM56, and a brief comparison to other similar BGC models are discussed in Section 5.100

2 Biogeochemical Flux Model 17 (BFM17)

The 17 state equation BFM17 is a reduced-order BGC model derived from the original 56 state equation BFM56 (Vichi et al.,

2007, 2013), which is based on the CFF approach. In this approach, functional groups are partitioned into living organic, non-

living organic, and non-living inorganic CFFs, and exchange of matter occurs through constituent units of carbon, nitrogen,

and phosphate. To date, there are no other BGC models with this order of reduced complexity using the CFF approach, making105

BFM17 unique and able to accurately reproduce complex ecosystem dynamics.

The reduced-order BFM17 is a pelagic model intended for upper thermocline, open-ocean, oligotrophic regions and is

obtained from the more-complete BFM56 by omitting quantities and processes of lesser significance in these regions, subject

to the constraint that variable internal nutrient dynamics are of continued importance. In BFM17, the living organic CFF is

comprised of single phytoplankton and zooplankton living functional groups (LFGs); these two groups are the bare minimum110

needed within a BGC model and already account for six state equations (corresponding to carbon, nitrogen, and phosphate

constituents of both groups). The baseline parameters used to model phytoplankton loosely correspond to the flagellate LFG

in BFM56, while the zooplankton parameters correspond to the micro-zooplankton LFG (Vichi et al., 2007, 2013). Compared

to BFM56, some of the parameter values in BFM17 were altered to represent general phytoplankton and zooplankton LFGs

and to improve agreement with observational data, although most parameters retain the same values as in BFM56. Dissolved115

and particulate organic matter, each with their own partitions of carbon, nitrogen, and phosphate, are also included to account

for nutrient recycling and carbon export due to particle sinking, both of which are important in upper thermocline, open-ocean,

oligotrophic regions. Remineralization of nutrients is provided by parameterized bacterial closure terms, thereby reducing

complexity while still maintaining critical nutrient recycling. Lastly, we track chlorophyll, dissolved oxygen, phosphate, nitrate,

and ammonium, since their distributions and availability can greatly enhance or hinder important biological and chemical120

processes.

Iron is omitted from BFM17, limiting the applicability of the model in regions where iron components are important, such as

the Southern Ocean. Top-down control of the ecosystem is also not included. Instead, a simple constant zooplankton mortality

is used, as this is a complicated process and understanding where to add this closure and where to feed the particulate and

dissolved nutrients from this process in a reduced-order model is not well understood. However, the addition of a top-down125

closure term was tested in various ways and no major differences were observed in the model results. Consequently, it was
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assumed that the constant mortality term was sufficient for this model, similar to other reduced-order models (Fasham et al.,

1990; Lawson et al., 1996; Clainche et al., 2004). Additionally, the benthic system within BFM56 (Mussap et al., 2016) has

been removed. It is assumed that within the upper thermocline of the open ocean, the ecosystem is not substantially influenced

by a benthic system and any water-column influences from depth can be taken into account using boundary conditions (such130

as those discussed in Section 4).

In summary, notable novel attributes of BFM17, in comparison with other reduced-order models of comparable complexity,

are the use of (i) CFFs for living organisms, including two LFGs for phytoplankton and zooplankton, (ii) CFFs for both

particulate and dissolved organic matter, and (iii) a full nutrient profile (i.e., phosphate, nitrate, and ammonium).

2.1 BFM17 Model Equations135

In the following, the detailed equations for each of the 17 state variables that comprise BFM17 are outlined. A summary of the

17 state variables is provided in Table 1 and a schematic of the CFFs and LFGs used in BFM17, along with their interactions,

is shown in Figure 1.

2.1.1 Environmental parameters

The BFM17 interacts with the environment through temperature and irradiance inputs. Temperature directly affects all physi-140

ological processes and is represented in the model by introducing the non-dimensional parameter f (T )
j defined as

f
(T )
j =Q

(T−T∗)/T∗

10,j , j = P,Z , (1)

where T ∗ is a base temperature andQ10,j is a coefficient that may differ for the phytoplankton and zooplankton LFGs, denoted

Pi and Zi, respectively. Here, the subscript i is used to denote different chemical constituents (i.e., C, N, and P) and j is

used to denote different LFGs. Base values used for T ∗ and Q10,j are shown in Table 2. The model additionally employs a145

temperature-dependent nitrification parameter f (T )
N , which is defined similarly to Eq. (1) as

f
(T )
N =Q

(T−T∗)/T∗

10,N , (2)

where Q10,N is given in Table 2

In contrast to temperature, irradiance only directly affects phytoplankton, serving as the primary energy source for phyto-

plankton growth and maintenance. Irradiance is a function of the incident solar radiation at the sea surface. Within BFM17, the150

amount of photosynthetically active radiation (PAR) at any given location z is parameterized according to the Lambert–Beer

model as

EPAR(z) = εPARQS exp


λwz+

0∫

z

λbio(z′)dz′


 , (3)

where QS is the short-wave surface irradiance flux, which is typically obtained from real-world measurements of the atmo-

spheric radiative transfer, εPAR is the fraction of PAR within QS , λw is the background light extinction due to water, and λbio is155
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Table 1. Notation used for the 17 state variables in the BFM17 pelagic model, as well as the chemical functional family (CFF), units,

description, and rate equation reference for each state variable. CFFs are divided into living organic (LO), non-living organic (NO), and

inorganic (IO) families.

Symbol CFF Units Description Equation

PC LO mg C m−3 Phytoplankton carbon (5)

PN LO mmol N m−3 Phytoplankton nitrogen (6)

PP LO mmol P m−3 Phytoplankton phosphorus (7)

Pchl LO mg Chl-a m−3 Phytoplankton chlorophyll (8)

ZC LO mg C m−3 Zooplankton carbon (31)

ZN LO mmol N m−3 Zooplankton nitrogen (32)

ZP LO mmol P m−3 Zooplankton phosphorus (33)

R
(1)
C NO mg C m−3 Dissolved organic carbon (41)

R
(1)
N NO mmol N m−3 Dissolved organic nitrogen (42)

R
(1)
P NO mmol P m−3 Dissolved organic phosphorus (43)

R
(2)
C NO mg C m−3 Particulate organic carbon (44)

R
(2)
N NO mmol N m−3 Particulate organic nitrogen (45)

R
(2)
P NO mmol P m−3 Particulate organic phosphorus (46)

O IO mmol O2 m−3 Dissolved oxygen (47)

N (1) IO mmol P m−3 Phosphate (48)

N (2) IO mmol N m−3 Nitrate (49)

N (3) IO mmol N m−3 Ammonium (50)

Table 2. Symbols, values, units, and descriptions for environmental parameters within the BFM17 pelagic model.

Symbol Value Units Description

Q10,P 2.00 - Phytoplankton Q10 coefficient

Q10,Z 2.00 - Zooplankton Q10 coefficient

Q10,N 2.00 - Nitrification Q10 coefficient

T ∗ 10.0 ◦C Base temperature

cP 0.03 m2 (mg chl)−1 Chlorophyll-specific light absorption coefficient

εPAR 0.40 - Fraction of photosynthetically active radiation

λw 0.0435 m−1 Background attenuation coefficient

cR(2) 0.1× 10−3 m2 (mg C)−1 C-specific attenuation coefficient of particulate detritus
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Figure 1. Schematic of the 17 state equation BFM17 pelagic model. The dissolved organic matter, particulate organic matter, and living

organic matter chemical functional families (CFFs) are each comprised of three chemical constituents (i.e., carbon, nitrogen, and phosphorus).

The living organic CFF is further subdivided into phytoplankton and zooplankton living functional groups (LFGs).

the light extinction due to suspended biological particles. Values for εPAR and λw are given in Table 2. The extinction coefficient

due to particulate matter, λbio, is dependent on phytoplankton chlorophyll, Pchl, and particulate detritus, R(2)
C , and is written as

λbio = cPPchl + cR(2)R
(2)
C , (4)

where cP and cR(2) are the specific absorption coefficients of phytoplankton chlorophyll and particulate detritus, respectively,

with values given in Table 2.160

2.1.2 Phytoplankton equations

The phytoplankton LFG in BFM17 is part of the living organic CFF and is composed of separate state variables for the

constituents carbon, nitrogen, phosphorous, and chlorophyll, denoted PC, PN, PP, and Pchl respectively (see also Table 1). The

governing equations for the constituent state variables are given by:
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Table 3. List of abbreviations used to indicate physiological and ecological processes in the equations comprising the BFM17 pelagic model.

Abbreviation Process

gpp Gross primary production

rsp Respiration

prd Predation

rel Biological release: egestion, excretion, mortality

exu Exudation

upt Uptake

lys Lysis

syn Biochemical synthesis

loss Biochemical loss

nit Nitrification

1. Phytoplankton functional group in the living organic CFF, carbon constituent (state variable PC):165

∂PC

∂t

∣∣∣∣
bio

=
∂PC

∂t

∣∣∣∣
gpp

CO2

− ∂PC

∂t

∣∣∣∣
rsp

CO2

− ∂PC

∂t

∣∣∣∣
lys

R
(1)
C

− ∂PC

∂t

∣∣∣∣
lys

R
(2)
C

− ∂PC

∂t

∣∣∣∣
exu

R
(1)
C

− ∂PC

∂t

∣∣∣∣
prd

ZC

, (5)

2. Phytoplankton functional group in the living organic CFF, nitrogen constituent (state variable PN):

∂PN

∂t

∣∣∣∣
bio

= max

[
0,
∂PN

∂t

∣∣∣∣
upt

N(2)

+
∂PN

∂t

∣∣∣∣
upt

N(3)

]
− ∂PN

∂t

∣∣∣∣
lys

R
(1)
N

− ∂PN

∂t

∣∣∣∣
lys

R
(2)
N

− ∂PN

∂t

∣∣∣∣
prd

ZN

, (6)

3. Phytoplankton functional group in the living organic CFF, phosphorus constituent (state variable PP):

∂PP

∂t

∣∣∣∣
bio

= max

[
0,
∂PP

∂t

∣∣∣∣
upt

N(1)

]
− ∂PP

∂t

∣∣∣∣
lys

R
(1)
P

− ∂PP

∂t

∣∣∣∣
lys

R
(2)
P

− ∂PP

∂t

∣∣∣∣
prd

ZP

, (7)170

4. Phytoplankton functional group in the living organic CFF, chlorophyll constituent (state variable Pchl):

∂Pchl

∂t

∣∣∣∣
bio

=
∂Pchl

∂t

∣∣∣∣
syn

− ∂Pchl

∂t

∣∣∣∣
loss

, (8)

where the descriptions of each of the source and sink terms are provided in Table 3. The subscript “bio” on the left-hand side

terms indicates that these are the total rate expressions associated with all biological processes.

For the evolution of the phytoplankton carbon constituent given by Eq. (5), gross primary production depends on the non-175

dimensional regulation factors for temperature and light as well as on the maximum photosynthetic growth rate and the phyto-

plankton carbon instantaneous concentration. This then gives

∂PC

∂t

∣∣∣∣
gpp

CO2

= r
(0)
P f

(T )
P f

(E)
P PC , (9)
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where r(0)P is the maximum photosynthetic rate for phytoplankton (reported in Table 4) and f (T )
P is the temperature regulation

factor for phytoplankton given by Eq. (1). The term f
(E)
P is the light regulation factor for phytoplankton, which is defined180

following (Jassby and Platt, 1976) as

f
(E)
P = 1− exp

(
−EPAR

EK

)
, (10)

where EPAR is defined in Eq. (3) and EK (the “optimal” irradiance) is given by

EK =

[
r
(0)
P

α
(0)
chl

](
PC

Pchl

)
. (11)

The parameter α(0)
chl is the maximum light utilization coefficient and is defined in Table 4.185

Phytoplankton respiration is parameterized in Eq. (5) as the sum of the basal respiration and activity respiration rates, namely

∂PC

∂t

∣∣∣∣
rsp

CO2

= bP f
(T )
P PC + γP

[
∂PC

∂t

∣∣∣∣
gpp

CO2

− ∂PC

∂t

∣∣∣∣
exu

R
(1)
C

]
, (12)

where bP is the basal specific respiration rate, γP is the respired fraction of the gross primary production, the gross primary

production term is given by Eq. (9), and the exudation term is defined below in Eq. (18). Values and descriptions for bP and190

γP are given in Table 4.

Both phytoplankton exudation and lysis, defined below, depend on a multiple nutrient limitation term f
(N,P)
P . This term allows

for the internal storage of nutrients and depends on the respective nutrient limitation terms for both nitrate and phosphate. It is

given by f (N,P)
P = min

[
f

(N)
P ,f

(P)
P

]
, where

f
(N)
P = min

{
1,max

[
0,
PN/PC−φ(min)

N

φ
(opt)
N −φ(min)

N

]}
, (13)195

f
(P)
P = min

{
1,max

[
0,
PP/PC−φ(min)

P

φ
(opt)
P −φ(min)

P

]}
. (14)

The parameters φ(opt)
N and φ(opt)

P are the optimal phytoplankton quotas for nitrogen and phosphorus, respectively, while φ(min)
N

and φ(min)
P are the minimum possible quotas, below which f (N)

P and f (P)
P are zero. Values for each of these parameters are

included in Table 4.

Phytoplankton lysis includes all mortality due to mechanical, viral, and yeast cell disruption processes, and is partitioned200

between particulate and dissolved detritus. The internal cytoplasm of the cell is released to dissolved detritus, denoted by R(1)
i ,

while structural parts of the cell are released to particulate detritus, denoted by the state variable R(2)
i , where i= C,N,P (see

also Table 1). The resulting lysis terms in Eqs. (5)–(7) are then given by

∂Pi

∂t

∣∣∣∣
lys

R
(1)
i

=
[
1− ε(N,P)

P

][ h
(N,P)
P

f
(N,P)
P +h

(N,P)
P

d
(0)
P Pi

]
, i= C,N,P , (15)

∂Pi

∂t

∣∣∣∣
lys

R
(2)
i

= ε
(N,P)
P

[
h

(N,P)
P

f
(N,P)
P +h

(N,P)
P

d
(0)
P Pi

]
, i= C,N,P , (16)205
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Table 4. Phytoplankton parameters, values, units, and descriptions within the BFM17 pelagic model.

Symbol Value Units Description

r
(0)
P 1.60 d−1 Maximum specific photosynthetic rate

bP 0.05 d−1 Basal specific respiration rate

d
(0)
P 0.05 d−1 Maximum specific nutrient-stress lysis rate

h
(N,P)
P 0.10 - Nutrient stress threshold

βP 0.05 - Excreted fraction of primary production

γP 0.05 - Activity respiration fraction

a
(N)
P 0.025 m3 (mg C)−1 d−1 Specific affinity constant for nitrogen

h
(N)
P 1.00 mmol N-NH4 m−3 Half saturation constant for ammonium uptake

φ
(min)
N 6.87× 10−3 mmolN (mg C)−1 Minimum nitrogen quota

φ
(opt)
N 1.26× 10−2 mmolN (mg C)−1 Optimal nitrogen quota

φ
(max)
N 1.0φ(opt)

N mmolN (mg C)−1 Maximum nitrogen quota

a
(P)
P 2.5× 10−3 m3 (mg C)−1 d−1 Specific affinity constant for phosphorus

φ
(min)
P 4.29× 10−4 mmolP (mg C)−1 Minimum phosphorus quota

φ
(opt)
P 7.86× 10−4 mmolP (mg C)−1 Optimal phosphorus quota

φ
(max)
P 1.0φ(opt)

P mmolP (mg C)−1 Maximum phosphorus quota

α
(0)
chl 1.52× 10−5 mgC (mg chl)−1 (µE)−1 m2 Maximum light utilization coefficient

θ
(0)
chl 0.016 mg chl (mg C)−1 Maximum chlorophyll to carbon quota

where h(N,P)
P is the nutrient stress threshold and d(0)

P is the maximum specific nutrient-stress lysis rate, both of which are given

in Table 4. The term ε
(N,P)
P is a fraction that ensures nutrients within the structural parts of the cell, which are less degradable,

are always released as particulate detritus. This fraction is determined by the expression

ε
(N,P)
P = min

[
1,
φ

(min)
N

PN/PC
,
φ

(min)
P

PP/PC

]
, (17)

where φ(min)
N and φ(min)

P are given in Table 4.210

If phytoplankton cannot equilibrate their fixed carbon with sufficient nutrients, this carbon is not assimilated and is instead

released in the form of dissolved carbon, denoted by state variable R(1)
C , in a process known as exudation. The exudation term

in Eq. (5) is parameterized as

∂PC

∂t

∣∣∣∣
exu

R
(1)
C

=
{
βP + (1−βP )

[
1− f (N,P)

P

]} ∂PC

∂t

∣∣∣∣
gpp

CO2

, (18)

where βP is the excreted fraction of gross primary production, defined in Table 4, and the gross primary production term is215

again given by Eq. (9).

The nutrient uptake of Eqs. (6) and (7) combines both the intracellular quota (i.e., Droop) and external concentration (i.e.,

Monod) approaches Baretta-Bekker et al. (1997). The total phytoplankton uptake of nitrogen, represented by the combination
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of the two uptake terms in Eq. (6), is the minimum of a diffusion-dependent uptake rate when internal nutrient quotas are low

and a rate that is based upon balanced growth needs and any excess uptake, namely220

∂PN

∂t

∣∣∣∣
upt

N(2,3)

= min

{
a
(N)
P

[
h

(N)
P

h
(N)
P +N (3)

N (2) +N (3)

]
PC , φ

(max)
N GP + νP

[
φ

(max)
N − PN

PC

]
PC

}
, (19)

where a(N)
P is the specific affinity for nitrogen, h(N)

P is the half saturation constant for ammonium uptake, and φ(max)
N is the

maximum nitrogen quota; base values for these three parameters are given in Table 4. The net primary productivity GP in

Eq. (19) is given as

GP = max

[
0,
∂PC

∂t

∣∣∣∣
gpp

CO2

− ∂PC

∂t

∣∣∣∣
exu

R
(1)
C

− ∂PC

∂t

∣∣∣∣
rsp

CO2

− ∂PC

∂t

∣∣∣∣
lys

R
(1)
C

− ∂PC

∂t

∣∣∣∣
lys

R
(2)
C

]
. (20)225

The specific uptake rate νP appearing in Eq. (19) is given by

νP = f
(T)
P r

(0)
P . (21)

It should be noted that only the sum of the two uptake terms, represented by Eq. (19), is required in the governing equation

for PN given by Eq. (6). However, in the governing equations for nitrate and ammonium, denoted N (2) and N (3) (see Table

1) that will be presented later, expressions are required for the individual uptake portions from nitrate and ammonium. When230

the total phytoplankton nitrogen uptake rate from Eq. (19) is positive, the individual portions from nitrate and ammonium are

determined by

∂PN

∂t

∣∣∣∣
upt

N(2)

= εP
∂PN

∂t

∣∣∣∣
upt

N(2,3)

, (22)

∂PN

∂t

∣∣∣∣
upt

N(3)

= (1− εP )
∂PN

∂t

∣∣∣∣
upt

N(2,3)

, (23)

where the rates on the right-hand sides are obtained from Eq. (19), and εP is given as235

εP =
sNN

(2)

N (3) + sNN (2)
. (24)

The preference for ammonium is defined by the saturation function sN and is given by

sN =
h

(N)
P

h
(N)
P +N (3)

. (25)

When the phytoplankton nitrogen uptake rate from Eq. (19) is negative, however, the entire nitrogen uptake goes to the dis-

solved organic nitrogen pool, R(1)
N [see Eq. (42)].240

As with the uptake of nitrogen, phytoplankton uptake of phosphorus in Eq. (7) is the minimum of a diffusion-dependent

rate and a balanced growth/excess uptake rate. This uptake comes entirely from one pool and the uptake term in Eq. (7) is

correspondingly given by

∂PP

∂t

∣∣∣∣
upt

N(1)

= min
{
a
(P)
P N (1)PC , φ

(max)
P GP + νP

[
φ

(max)
P PC−PP

]}
, (26)
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where a(P)
P is the specific affinity constant for phosphorous and φ(max)

P is the maximum phosphorous quota. Values for both245

parameters are given in Table 4. If the uptake rate is negative, the entire phosphorus uptake goes to the dissolved organic

phosphorus pool, R(1)
P .

Predation of phytoplankton within BFM17 is solely performed by zooplankton, and each of the predation terms appearing

in Eqs. (5)–(7) are equal and opposite to the zooplankton predation terms, namely

∂Pi

∂t

∣∣∣∣
prd

Zi

=− ∂Zi

∂t

∣∣∣∣
prd

Pi

, i= C,N,P . (27)250

Equations for the zooplankton predation terms are given in the next section.

Finally, phytoplankton chlorophyll, denoted Pchl with the rate equation given by Eq. (8), contributes to the definition of

the optimal irradiance value in Eq. (11) and of the phytoplankton contribution to the extinction coefficient in Eq. (4). The

phytoplankton chlorophyll source term in Eq. (8) is made up of only two terms: chlorophyll synthesis and loss. Net chlorophyll

synthesis is a function of acclimation to light n conditions, availability of nutrients, and turnover rate, and is given by255

∂Pchl

∂t

∣∣∣∣
syn

= ρchl (1− γP )

[
∂PC

∂t

∣∣∣∣
gpp

CO2

− ∂PC

∂t

∣∣∣∣
exu

R
(1)
C

]
− Pchl

PC

[
∂PC

∂t

∣∣∣∣
lys

R
(1)
C

+
∂PC

∂t

∣∣∣∣
lys

R
(2)
C

+
∂PC

∂t

∣∣∣∣
rsp

CO2

]
, (28)

where ρchl regulates the amount of chlorophyll in the phytoplankton cell and all other terms in the above expression have been

defined previously. The term ρchl is computed according to a ratio between the realized photosynthetic rate (i.e., gross primary

production) and the maximum potential photosynthesis Geider et al. (1997), and is correspondingly given as

ρchl = θ
(0)
chl min

{
1,

(1− γP )

α
(0)
chl EPARPchl

[
∂PC

∂t

∣∣∣∣
gpp

CO2

− ∂PC

∂t

∣∣∣∣
exu

R
(1)
C

]}
, (29)260

where θ(0)chl is the maximum chlorophyll to carbon quota and α(0)
chl is the maximum light utilization coefficient, both of which can

be found in Table 4. Chlorophyll loss in Eq. (8) is simpler and is just a function of predation, where the amount of chlorophyll

transferred back to the infinite sink is proportional to the carbon predated by zooplankton, giving

∂Pchl

∂t

∣∣∣∣
loss

=
Pchl

PC

∂PC

∂t

∣∣∣∣
prd

ZC

. (30)

2.1.3 Zooplankton equations265

The zooplankton LFG group in BFM17 is part of the living organic CFF and is composed of separate state variables for

carbon, nitrogen, and phosphorous, denoted ZC, ZN, and ZP, respectively (see also Table 1). The governing equations for the

constituent state variables are given by:

5. Zooplankton functional group in the living organic CFF, carbon constituent (state variable ZC):

∂ZC

∂t

∣∣∣∣
bio

=
∂ZC

∂t

∣∣∣∣
prd

PC

− ∂ZC

∂t

∣∣∣∣
rsp

CO2

− ∂ZC

∂t

∣∣∣∣
rel

R
(1)
C

− ∂ZC

∂t

∣∣∣∣
rel

R
(2)
C

, (31)270
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6. Zooplankton functional group in the living organic CFF, nitrogen constituent (state variable ZN):

∂ZN

∂t

∣∣∣∣
bio

=
∂ZN

∂t

∣∣∣∣
prd

PN

− ∂ZN

∂t

∣∣∣∣
rel

R
(1)
N

− ∂ZN

∂t

∣∣∣∣
rel

R
(2)
N

− ∂ZN

∂t

∣∣∣∣
rel

N(3)

, (32)

7. Zooplankton functional group in the living organic CFF, phosphorus constituent (state variable ZP):

∂ZP

∂t

∣∣∣∣
bio

=
∂ZP

∂t

∣∣∣∣
prd

PP

− ∂ZP

∂t

∣∣∣∣
rel

R
(1)
P

− ∂ZP

∂t

∣∣∣∣
rel

R
(2)
P

− ∂ZP

∂t

∣∣∣∣
rel

N(1)

, (33)

where, once more, descriptions of each of the source and sink terms are provided in Table 3.275

Zooplankton predation of phytoplankton, which appears as the first term in each of Eqs. (31)–(33), primarily depends on the

availability of phytoplankton and their capture efficiency, and is expressed as

∂Zi

∂t

∣∣∣∣
prd

Pi

=
Pi

PC

[
f

(T )
Z r

(0)
Z δZ,P

PC

PC +h
(F )
Z

ZC

]
, i= C,N,P , (34)

where r(0)Z is the potential specific growth rate and h(F )
Z is the Michaelis constant for total food ingestion. These parameters

and their base values are included in Table 5. Here, f (T )
Z is the temperature regulating factor for zooplankton growth given by280

Eq. (1). The total food availability can be expressed as δZ,PPC, where δZ,P is the prey availability of phytoplankton and is

included in Table 5.

Zooplankton respiration is the sum of active and basal metabolism rates, where active respiration is the cost of nutrient

ingestion, or predation. The resulting respiration rate is given by

∂ZC

∂t

∣∣∣∣
rsp

CO2

= (1− ηZ −βZ)
∂ZC

∂t

∣∣∣∣
prd

Pc

+ bZf
(T )
Z ZC , (35)285

where ηZ is the assimilation efficiency, βZ is the excreted fraction uptake, and bZ is the basal specific respiration rate. All three

parameters are included in Table 5.

The biological release terms in Eqs. (31)–(33) are the sum of zooplankton excretion, egestion, and mortality. Excretion and

egestion are the portions of ingested nutrients, resulting from predation, that have not been assimilated or used for respiration.

Zooplankton mortality is parameterized as the sum of a constant mortality rate and an oxygen-dependent regulation factor290

given by

f
(O)
Z =

O

O+hO
, (36)

where O represents the oxygen constituent of the dissolved gas in the inorganic CFF and hO is the half saturation coefficient

for chemical processes given in Table 6. The total biological release is then partitioned into particulate and dissolved organic

matter, giving295

∂Zi

∂t

∣∣∣∣
rel

R
(1)
i

= ε
(i)
Z

{
βZ

∂Zi

∂t

∣∣∣∣
prd

Pi

+ dZ + d
(0)
Z

[
1− f (O)

Z

]
f

(T )
Z Zi

}
, i= C,N,P , (37)

∂Zi

∂t

∣∣∣∣
rel

R
(2)
i

=
[
1− ε(i)Z

] ∂Zi

∂t

∣∣∣∣
rel

R
(1)
i

, i= C,N,P , (38)

13

https://doi.org/10.5194/gmd-2020-134
Preprint. Discussion started: 13 July 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 5. Zooplankton parameters, values, units, and descriptions within the BFM17 pelagic model.

Symbol Value Unit Description

bZ 0.02 d−1 Basal specific respiration rate

r
(0)
Z 2.00 d−1 Potential specific growth rate

d
(0)
Z 0.25 d−1 Oxygen dependent specific mortality rate

dZ 0.05 d−1 Specific mortality rate

ηZ 0.50 - Assimilation efficiency

βZ 0.25 - Fraction of activity excretion

εC
Z 0.60 - Partition between dissolved and particulate excretion of C

εN
Z 0.72 - Partition between dissolved and particulate excretion of N

εP
Z 0.832 - Partition between dissolved and particulate excretion of P

h
(F )
Z 200.0 mg C m−3 Michaelis constant for total food ingestion

δZ,P 1.00 - Availability of phytoplankton to zooplankton

ν
(P)
Z 1.0 d−1 Specific rate constant for phosphorous excretion

ν
(N)
Z 1.0 d−1 Specific rate constant for nitrogen excretion

ϕ(opt)
P 7.86× 10−4 mmolP (mg C)−1 Optimal phosphorous quota

ϕ(opt)
N 0.0126 mmolN (mg C)−1 Optimal nitrogen quota

where ε(i)Z is the fraction excreted to the dissolved pool, dZ is the specific mortality rate, and d(0)
Z is the oxygen dependent

specific morality rate. Base values for each parameter are given in Table 5.

The zooplankton also excrete into the nutrient pools of phosphate,N (1), and ammonium,N (3). These effects are represented300

by the final terms of Eqs. (32) and (33), which are parameterized by

∂ZN

∂t

∣∣∣∣
rel

N(3)

= ν
(N)
Z max

[
0,
ZN

ZC
−ϕ(opt)

N

]
ZN , (39)

∂ZP

∂t

∣∣∣∣
rel

N(1)

= ν
(P)
Z max

[
0,
ZP

ZC
−ϕ(opt)

P

]
ZP , (40)

where ν(N)
Z and ν

(P)
Z are specific rate constants and ϕ(opt)

N and ϕ(opt)
P are the optimal zooplankton quotas for nitrogen and

phosphorous, respectively. All four parameters are included in Table 5.305

2.1.4 Dissolved organic matter equations

The governing equations for the three constituents of dissolved organic matter are given by:

8. Dissolved matter in non-living organic CFF, carbon constituent [state variable R(1)
C ]:

∂R
(1)
C

∂t

∣∣∣∣∣
bio

=
∂PC

∂t

∣∣∣∣
lys

R
(1)
C

+
∂PC

∂t

∣∣∣∣
exu

R
(1)
C

+
∂ZC

∂t

∣∣∣∣
rel

R
(1)
C

−α(sinkC)

R(1) R
(1)
C , (41)
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Table 6. Values, units, and descriptions for dissolved organic matter, particulate organic matter, and nutrient parameters within the BFM17

pelagic model.

Symbol Value Units Description

α
(sinkC)

R(1) 0.05 d−1 Specific remineralization rate of dissolved carbon

ζN(1) 0.05 d−1 Specific remineralization rate of dissolved phosphorus

ζN(3) 0.05 d−1 Specific remineralization rate of dissolved nitrogen

α
(sinkC)

R(2) 0.1 d−1 Specific remineralization rate of particulate carbon

ξN(1) 0.1 d−1 Specific remineralization rate of particulate phosphorus

ξN(3) 0.1 d−1 Specific remineralization rate of particulate nitrogen

Λ
(nit)
N(3) 0.01 d−1 Specific nitrification rate at 10 ◦C

hO 10.0 mmolO2 m−3 Half saturation for chemical processes

Ω
(O)
C 12.0 mmolO2 mgC−1 Stoichiometric coefficient for oxygen reaction

Ω
(O)
N 2.0 mmolO2 mmolN−1 Stoichiometric coefficient for nitrification reaction

9. Dissolved matter in non-living organic CFF, nitrogen constituent [state variable R(1)
N ]:310

∂R
(1)
N

∂t

∣∣∣∣∣
bio

=
∂PN

∂t

∣∣∣∣
lys

R
(1)
N

+
∂ZN

∂t

∣∣∣∣
rel

R
(1)
N

−min

[
0,
∂PN

∂t

∣∣∣∣
upt

N(2)

+
∂PN

∂t

∣∣∣∣
upt

N(3)

]
− ζN(3)R

(1)
N , (42)

10. Dissolved matter in non-living organic CFF, phosphorus constituent [state variable R(1)
P ]:

∂R
(1)
P

∂t

∣∣∣∣∣
bio

=
∂PP

∂t

∣∣∣∣
lys

R
(1)
P

+
∂ZP

∂t

∣∣∣∣
rel

R
(1)
P

−min

[
0,
∂PP

∂t

∣∣∣∣
upt

N(1)

]
− ζN(1)R

(1)
P . (43)

All terms except for the last terms in each of these equations, representing remineralization, have been defined in previous

sections. Remineralization of dissolved organic matter by bacteria is parameterized within BFM17 as a rate that is proportional315

to the local concentration of that dissolved constituent. In Eq. (41), remineralization is parameterized as α(sinkC)

R(1) R
(1)
C , where

α
(sinkC)

R(1) is a constant that controls the rate at which dissolved carbon is remineralized and returned to the pool of carbon; this

constant is given in Table 6. In Eqs. (42) and (43), remineralization is represented by the parameters ζN(3) and ζN(1) , which are

the specific remineralization rates of dissolved ammonium and phosphate, respectively. These rates are also included in Table 6

2.1.5 Particulate organic matter equations320

The governing equations for the three constituents of particulate organic matter are given by:

11. Particulate matter in non-living organic CFF, carbon constituent [state variable R(2)
C ]:

∂R
(2)
C

∂t

∣∣∣∣∣
bio

=
∂PC

∂t

∣∣∣∣
lys

R
(2)
C

+
∂ZC

∂t

∣∣∣∣
rel

R
(2)
C

−α(sinkC)

R(2) R
(2)
C , (44)
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12. Particulate matter in non-living organic CFF, nitrogen constituent [state variable R(2)
N ]:

∂R
(2)
N

∂t

∣∣∣∣∣
bio

=
∂PN

∂t

∣∣∣∣
lys

R
(2)
N

+
∂ZN

∂t

∣∣∣∣
rel

R
(2)
N

− ξN(3)R
(2)
N , (45)325

13. Particulate matter in non-living organic CFF, phosphorus constituent [state variable R(2)
P ]:

∂R
(2)
P

∂t

∣∣∣∣∣
bio

=
∂PP

∂t

∣∣∣∣
lys

R
(2)
P

+
∂ZP

∂t

∣∣∣∣
rel

R
(2)
P

− ξN(1)R
(2)
P . (46)

Once again, all terms except for the final remineralization terms in each equation have been defined in previous sections.

Remineralization of particular organic matter by bacteria is parameterized within BFM17 as a rate that is proportional to the

local concentration of that particulate constituent. In Eq. (44), remineralization is parameterized by α(sinkC)

R(2) R
(2)
C , where α(sinkC)

R(2)330

is a constant that controls the rate at which the particulate carbon is remineralized. The base value for this constant is provided

in Table 6. The parameters ξN(3) and ξN(1) are the specific remineralization rates of particulate ammonium and phosphate,

respectively. The specific remineralization rates for particulate organic matter are also presented in Table 6.

2.1.6 Dissolved gas and nutrient equations

The only dissolved gas resolved by BFM17 is oxygen,O, (carbon dioxide is treated as an infinite source/sink) and the dissolved335

nutrients in the model are phosphate, N (1), nitrate, N (2), and ammonium, N (3) (see also Table 1). Governing equations for

each of these state variables are given by:

14. Dissolved gas in the inorganic CFF, oxygen constituent (state variable O):

∂O

∂t

∣∣∣∣
bio

=
∂O

∂t

∣∣∣∣
wind

+ Ω(O)
C

[
∂PC

∂t

∣∣∣∣
gpp

CO2

− ∂PC

∂t

∣∣∣∣
rsp

CO2

− ∂ZC

∂t

∣∣∣∣
rsp

CO2

−α(sinkC)

R(2) R
(2)
C −α

(sinkC)

R(1) R
(1)
C

]

−Ω(O)
N

∂N (3)

∂t

∣∣∣∣
nit

N(2)

, (47)340

15. Dissolved nutrient in the inorganic CFF, phosphate constituent (state variable N (1)):

∂N (1)

∂t

∣∣∣∣
bio

=− ∂PP

∂t

∣∣∣∣
upt

N(1)

+ ζN(1)R
(1)
P + ξN(1)R

(2)
P +

∂ZP

∂t

∣∣∣∣
rel

N(1)

, (48)

16. Dissolved nutrient in the inorganic CFF, nitrate constituent (state variable N (2)):

∂N (2)

∂t

∣∣∣∣
bio

=− ∂PN

∂t

∣∣∣∣
upt

N(2)

+
∂N (2)

∂t

∣∣∣∣
nit

N(3)

, (49)

17. Dissolved nutrient in the inorganic CFF, ammonium constituent (state variable N (3)):345

∂N (3)

∂t

∣∣∣∣
bio

=− ∂PN

∂t

∣∣∣∣
upt

N(3)

+ ζN(3)R
(1)
N + ξN(3)R

(2)
N +

∂ZN

∂t

∣∣∣∣
rel

N(3)

− ∂N (3)

∂t

∣∣∣∣
nit

N(2)

. (50)
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Aeration of the surface layer by wind, ∂O/∂t|wind, is parameterized as described in Refs. (Wanninkhof, 1992, 2014). In a

zero-dimensional model it is a source term for dissolved oxygen and so belongs in Eq. (47). However, in any model of one

dimension or more it should be treated as a surface boundary condition for dissolved oxygen and so belongs in Eq. (69) and

should be omitted from Eq. (47). The parameters Ω(O)
C and Ω(O)

N are stoichiometric coefficients used to convert units of carbon350

to units of oxygen and nitrogen, respectively. All terms in the above equations have been defined in previous sections, except

for nitrification. Nitrification is a source term for nitrate and is parameterized as a sink of ammonium and oxygen as

∂N (2)

∂t

∣∣∣∣
nit

N(3)

=
∂N (3)

∂t

∣∣∣∣
nit

N(2)

= Λ(nit)
N(3)f

(T )
N f

(O)
Z N (3) , (51)

where Λ(nit)
N(3) is the specific nitrification rate, given in Table 6. The terms f (T )

N and f (O)
Z are defined in Eqs. (2) and (36),

respectively.355

2.2 Zero-Dimensional Test of the BFM17

As an initial test of BFM17, the model was integrated in a 0D (i.e., time only) test for 10 years using sinusoidal forcing for the

temperature (in units of ◦C), salinity (psu), 10 m wind-speed (m s−1), and PAR (W m−2) cycles. This forcing is implemented

as

F (var)(t) =
[
F (var)

s +F (var)
w

]
− 0.5

[
F (var)

s −F (var)
w

]
cos(tR) , (52)360

where F (var) is the annually varying forcing term, ‘var’ indicates the variable of interest, corresponding to temperature (‘temp’),

salinity (‘sal’), wind speed (‘wind’), and PAR. In Eq. (52), F (var)
w and F (var)

s are, respectively, the winter and summer extreme

values for the forcing term considered, 0≤ t≤ 360 is the time, and R= π/180. The winter and summer values were chosen

to be similar to those found in the observational data described later in Section 4, with [F (temp)
w ,F

(temp)
s ] = [10◦C,30◦C],

[F (sal)
w ,F

(sal)
s ] = [37 psu,36.5 psu], [F (wind)

w ,F
(wind)
s ] = [6 m s−1,2 m s−1], and [F (PAR)

w ,F
(PAR)
s ] = [10 W m−2,120 W m−2].365

Note that, in the 0D framework, the wind forcing does not constrain the biogeochemical dynamics, but does play a role in

oxygen exchange with the atmosphere, defined according to Wanninkhof (Wanninkhof, 1992, 2014).

Initial values for chlorophyll, oxygen, phosphate, and nitrate were taken to be similar to values from the observational data,

withPchl = 0.2 mg Chl-am−3,O = 230 mmol O2 m−3,N (1) = 0.06 mmol P m−3, andN (2) = 1.0 mmol N m−3). Phytoplankton

carbon was calculated using the maximum chlorophyll to carbon ratio, θ(0)chl in Table 4. Initial values for zooplankton carbon,370

dissolved carbon, and particulate organic carbon were assumed to be the same as the phytoplankton carbon. Ammonium was

assumed to have the same initial concentration as phosphate. All other constituents were calculated using their respective

optimal ratios in Tables 4 and 5.

Figure 2 shows the seasonal cycle of surface chlorophyll, zooplankton carbon, and nitrate over the last 4 years of the 10-year

simulation period, indicating that a self-consistent and stable seasonal cycle with reasonable ecosystem values can be attained375

by the reduced model. Figures 2(a) and (c) also show monthly averaged values taken from the observational data described in

Section 4. Although the agreement between the 0D BFM17 model and the observations is not perfect, both are qualitatively

similar and close in magnitude, providing confidence in the accuracy of the model despite the lower fidelity of the 0D test.
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Figure 2. Seasonal cycle of surface (a) chlorophyll, (b) zooplankton carbon, and (c) nitrate from the 0D test of BFM17. Results are shown

for the last 4 years of the 10-year simulation. Panels (a) and (c) show monthly averaged values taken from the observational data described

in Section 4.

3 Coupled Physical-Biogeochemical Flux Model

In the following sections, we describe the coupled 1D physical and biogeochemical model used for the comparisons with the380

observational data. The coupled physical and biogeochemical model is a time-depth model that integrates in time the generic

equation for all biological state variables, denoted Aj , given by

∂Aj

∂t
=
∂Aj

∂t

∣∣∣∣
bio
−
[
W +WE + v(set)

] ∂Aj

∂z
+

∂

∂z

(
KH

∂Aj

∂z

)
, (53)

where the first term on the right-hand side accounts for sources and sinks within each species due to biological and chemical

reactions. Although the BFM17 formulation and model results are the primary focus of the present study, we also perform385

coupled physical-biogeochemical simulations using BFM56 for comparison. Equation (53) applies to all 17 state variables in

BFM17, as well as to all 56 state variables in BFM56. Consequently, the only differences between the biophysical models with

BFM17 and BFM56 are the number of state variables being tracked and the equations used to calculate the biological forcing

terms. The specific forms of Eq. (53) for each of the 17 species in BFM17 are discussed in Section 2.1, and the specific forms

of this equation for each of the 56 species in BFM56 were previously discussed in Vichi et al. (2007). The parameters used390

in BFM56 correspond to the values provided in Tables 4–6, with the remaining undefined parameters (since BFM56 includes

many more model parameters than BFM17) based on values from Mussap et al. (2016).

The vertical velocities W and WE in Eq. (53) are the large-scale general circulation and mesoscale eddy vertical velocities,

respectively. The range of values for each of these velocities are included in Table 7 and the corresponding depth profiles

are discussed in Section 4.3. The settling velocity, v(set), in Eq. (53) is only non-zero for the three constituents of particulate395

organic matter, namely, R(2)
C,N,P, and its value is given in Table 7. We assume v(set) = 0 for zooplankton, since zooplankton
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Table 7. Values, units, and descriptions for parameters used in the combined physical–BFM17 model.

Symbol Value Units Description

v(set) -1.00 m d−1 Settling velocity of particulate detritus

W -0.02 – 0 m d−1 Imposed general circulation vertical velocity

WE 0 – 0.1 m d−1 Imposed mesoscale circulation vertical velocity

λO 0.06 m d−1 Relaxation constant for oxygen at bottom

λN(1) 0.06 m d−1 Relaxation constant for phosphate at bottom

λN(2) 0.06 m d−1 Relaxation constant for nitrate at bottom

κN(3) 0.05 m2 s−1 Relaxation diffusivity for ammonium at bottom

actively swim and oppose their own sinking velocity. Finally, KH in Eq. (53) is the vertical eddy diffusivity term calculated by

the model, and is described in more detail later in this section.

To obtain the complete 1D biophysical model, BFM17 has been coupled with a modification of the three-dimensional

Princeton Ocean Model (POM) (Blumberg and Mellor, 1987) that considers only the vertical and time dimensions; that is, the400

evolution of the system in the (z, t) space. It is well known that the primary calibration dimension in marine ocean biogeo-

chemistry is along the vertical direction, as shown in several previous calibration and validation exercises (Vichi et al., 2003;

Triantafyllou et al., 2003; Mussap et al., 2016).

The 1D POM solver (POM-1D) is used to calculate the vertical structure of the two horizontal velocity components, denoted

U and V , the potential temperature, T , salinity, S, density, ρ, turbulent kinetic energy, q2/2, and mixing length scale, `.405

In this model adaptation, vertical temperature and salinity profiles are imposed from given climatological monthly profiles, as

previously done in Mussap et al. (2016) and Bianchi et al. (2005). The model computes only the time evolution of the horizontal

velocity components, the turbulent kinetic energy and the mixing length scale, all of which are used to compute the turbulent

diffusivity term, KH , required in Eq. (53). In this configuration, POM-1D is called “diagnostic” since temperature and salinity

are prescribed. Furthermore, pressure effects are neglected in the density equation and the buoyancy gradients and temperature410

are used in place of potential temperature since we consider only the upper water column.

In diagnostic mode, POM-1D solves the momentum equations for U and V given by

∂U

∂t
− fV =

∂

∂z

(
KM

∂U

∂z

)
, (54)

∂V

∂t
+ fU =

∂

∂z

(
KM

∂V

∂z

)
, (55)

where f = 2Ωsinφ is the Coriolis force, Ω is the angular velocity of the Earth, and φ is the latitude. The vertical viscosity KM415

and diffusivity KH are calculated using the closure hypothesis of Mellor and Yamada (1982) as

KM = q lSM , (56)

KH = q lSH , (57)
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where q is the turbulent velocity and SH and SM are stability functions written as

SM [1− 9A1A2GH ]−SH

[
(18A2

1 + 9A1A2)GH

]
= A1 [1− 3C1− 6A1/B1] , (58)420

SH [1− (3A2B2 + 18A1A2)GH ] = A2 [1− 6A1/B1] . (59)

The coefficients in the above expressions are (A1,B1,A2,B2,C1) = (0.92,16.6,0.74,10.1,0.08), with

GH =
l2

q2
g

ρ0

∂ρ

∂z
, (60)

where ρ0 = 1025 kg m−3, g = 9.81 m s−2. Following Mellor (2001), GH is limited to have a maximum value of 0.028. The

equation of state relating ρ to T and S is nonlinear (Mellor, 1991) and given by425

ρ = 999.8 + (6.8× 10−2− 9.1× 10−3T + 1.0× 10−4T 2− 1.1× 10−6T 3 + 6.5× 10−9T 4)T

+ (0.8− 4.1× 10−3T + 7.6× 10−5T 2− 8.3× 10−7T 3 + 5.4× 10−9T 4)S

+ (−5.7× 10−3 + 1.0× 10−4T − 1.6× 10−6T 2)S1.5 + 4.8× 10−4S2 , (61)

where the polynomial constants have been written only up to the first digit. For a more precise reproduction of these constants,

the reader is referred to Mellor (1991). Finally, the governing equations solved to obtain the turbulence variables q2/2 and `430

are

∂

∂t

(
q2

2

)
=

∂

∂z

[
Kq

∂

∂z

(
q2

2

)]
+KM

[(
∂U

∂z

)2

+
(
∂V

∂z

)2
]

+
g

ρ0
KH

∂ρ

∂z
− q3

B1`
, (62)

∂

∂t

(
q2`
)

=
∂

∂z

[
Kq

∂

∂z

(
q2`
)]

+E1`KM

[(
∂U

∂z

)2

+
(
∂V

∂z

)2
]

+E1`
g

ρ0
KH

∂ρ

∂z
− q3

B1
W̃ , (63)

where Kq = κKH is the vertical diffusivity for turbulence variables, κ= 0.4 is the von Karman constant, and

W̃ =
[
1 +E2`

2/κ2 (1/|z|+ 1/|z−H|)2
]

with (E1,E2) = (1.8,1.33). In Eqs. (62) and (63), the time rate of change of the435

turbulence quantities is equal to the diffusion of turbulence (the first term on the right hand side of both equations), the shear

and buoyancy turbulence production (second and third terms), and the dissipation (the fourth term). This is a second-order

turbulence closure model that was formulated by Mellor (2001) as a particular case of the Mellor and Yamada (1982) model

for upper ocean mixing.

Boundary conditions for the horizontal velocities U = (U,V ) and the turbulence quantities are440

KM
∂U

∂z

∣∣∣
z=0

= τw , (64)

KM
∂U

∂z

∣∣∣
z=zend

= 0 , (65)

(
q2, q2`

)∣∣
z=0

=
(
B

2/3
1

|τw|
Cd

,0
)
, (66)

(q2, q2`)|z=zend = 0 , (67)

where τw = Cd|uw|uw is the surface wind stress, uw is the surface wind vector, Cd is a constant drag coefficient chosen to be445

2.5× 10−3, and z = 0 and z = zend denote the locations of the surface and the greatest depth modeled, respectively.
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For all variables except oxygen, surface boundary conditions for the coupled model variable Aj are

KH
∂Aj

∂z

∣∣∣∣
z=0

= 0 . (68)

By contrast, the surface boundary condition for oxygen has the form

KH
∂O

∂z

∣∣∣∣
z=0

= ΦO , (69)450

where ΦO is the air-sea interface flux of oxygen computed according to Wanninkhof (1992, 2014). The bottom (i.e., greatest

depth) boundary conditions for phytoplankton, zooplankton, dissolved organic matter, and particulate organic matter are

KH
∂Aj

∂z

∣∣∣∣
z=zend

= 0 . (70)

This boundary condition was chosen since it allows removal of the scalar quantity Aj through the bottom boundary of the

domain. This can be seen by integrating Eq. (53) over the boundary layer depth using the boundary condition above, giving455

∂

∂t

z=0∫

z=zend

Ajdz =
[
W +WE + v(set)

]
Aj |z=zend

, (71)

where the biological part of Eq. (53) has been neglected and the resulting temporal change in the integrated scalarAj is negative

since |(W +WE)|< |v(set)|, as shown in Table 7. For oxygen, phosphate, and nitrate, the bottom boundary conditions are

KH
∂Aj

∂z

∣∣∣∣
z=zend

= λj

(
Aj |z=zend

−A∗j
)
, (72)

where λj and A∗j are the corresponding relaxation velocity and observed at-bottom boundary climatological field data value,460

respectively, of that species. Base values for the relaxation velocities are included in Table 7. Lastly, the bottom boundary

condition for ammonium is dependent on the gradient of particulate organic nitrogen as

KH
∂N (3)

∂z

∣∣∣∣
z=zend

= κN(3)
∂R

(2)
N

∂z
, (73)

where κN(3) is a relaxation diffusivity. In general, ammonium is not often included in observational measurements, so the

gradient in particulate organic nitrogen is used to approximate the bottom boundary condition for ammonium. The relaxation465

diffusivity for ammonium at the bottom, κN(3) , is included in Table 7.

4 Field Validation and Calibration Data

4.1 Study Site Description

Field data for calibration and validation of BFM17 are taken from the Bermuda Atlantic Time-series Study (BATS) (Steinberg

et al., 2001) and the Bermuda Testbed Mooring (BTM) (Dickey et al., 2001) sites, which are located in the Sargasso Sea470
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(31◦40’ N, 64◦10’ W) in the North Atlantic subtropical gyre. Both sites are a part of the US Joint Global Ocean Flux Study

(JGOFS) program. Data has been collected from the BATS site since 1988 and from the BTM site since 1994.

Steinberg et al. (2001) provide an overview of the biogeochemistry in the general BATS and BTM area. Winter mixing

allows nutrients to be brought up into the mixed layer, producing a phytoplankton bloom between January and March. As

thermal stratification intensifies over the summer months, this nutrient supply is cut off. At this point, a subsurface chlorophyll475

maximum is observed near a depth of 100 m. Stoichiometric ratios of carbon, nitrate, and phosphate are often non-Redfield

and, in contrast to many oligotrophic regimes, phosphate is the dominant limiting nutrient (Fanning, 1992; Michaels et al.,

1993; Cavender-Bares et al., 2001; Steinberg et al., 2001; Ammerman et al., 2003; Martiny et al., 2013; Singh et al., 2015).

4.2 Data Processing

The region encompassing the BATS and BTM sites is characterized as an open ocean, oligotrophic region that is phosphate480

limited. This region has thus been chosen for initial calibration and validation of BFM17 due to the prevalence of oligotrophic

regimes in the open ocean and to demonstrate the ability of BFM17 to capture difficult non-Redfield ratio regimes (which occur

in phosphate-limited regions). The BATS/BTM data have also been collected over many years, providing long time series for

model calibration and validation.

Data from the BATS/BTM area is used in the present study for two purposes: (i) as initial, boundary, and forcing conditions485

for the POM-1D biophysical simulations with BFM17 and BFM56, and (ii) as target fields for validation of the simulations.

In addition to the subsurface BATS data, we also use BTM surface data, such as the 10 m wind speed and PAR. For each

observational quantity, we compute monthly averages over 27 years for the BATS data and 23 years (not continuous) for the

BTM data. Additionally, we interpolate the BATS data to a vertical grid with 1m resolution. We subsequently smooth the

interpolated data to maintain a positive buoyancy gradient, thereby eliminating any spurious buoyancy-driven mixing due to490

interpolation and averaging.

Figure 3 shows the monthly climatological profiles of temperature and salinity from the BATS data, as well as the PAR and

10 m wind speed from the BTM data. Similar processing is also performed on biological variables, which largely serve as

target fields for the validation of BFM17. Figure 4 shows monthly-averaged vertical profiles of chlorophyll, oxygen, nitrate,

phosphate, particulate organic nitrogen, and net primary production from the BATS data.495

4.3 Inputs to the Physical Model

The physical model computes density from the prescribed temperature and salinity, and surface wind stress from the 10 m

wind speed; temperature, salinity, and wind speed are all provided by the BATS/BTM data. The model also uses this data

in the turbulence closure to compute the turbulent viscosity and diffusivity. This diagnostic approach eliminates any drifts

in temperature and salinity that might occur due to improper parameterizations of lateral mixing in a 1D model, therefore500

providing greater reliability. In addition to the 10 m wind speed, temperature, and salinity, BFM requires monthly varying PAR

at the surface. For all the monthly mean input data sets, a correction (Killworth, 1995) is applied to the monthly averages to

account for monthly mean errors due to linear interpolation to the model time step.
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Figure 3. Sargasso Sea physical variables, showing climatological monthly averaged (a) temperature, (b) 10 m surface wind speed, (c) surface

PAR, and (d) salinity. Panel (e) shows the mean seasonal general circulation velocity, W , and panel (f) shows the bimonthly maximum value

of the mesoscale eddy velocity WE .

We imposed both general circulation, W , and mesoscale eddy, WE , vertical velocities in the simulations. The imposed

vertical profiles of these velocities have been adapted from Bianchi et al. (2005), where the the velocities are assumed to be505

zero at the surface and reach their maxima near the base of the Ekman layer, which is assumed to be at or below the bottom

boundary of the simulations. The general large-scale upwelling/downwelling circulation, W , is due to Ekman pumping and is

correspondingly given as

W = k̂ ·∇×
(
τw

ρf

)
, (74)

where k̂ denotes the unit vector in the vertical direction. The monthly average value and sign of the wind stress curl, ∇×τw, for510

the general BATS/BTM region was taken from the Scatterometer Climatology of Ocean Winds database (Risien and Chelton,

2008, 2011). The monthly value of W from Eq. (74) is then assumed to be the maximum, occurring at the base of the Ekman

layer, for that particular month. Given the sign of the wind stress curl for the BATS/BTM region, a negative W was calculated,

indicating general downwelling processes in this region. Seasonal profiles of W are shown in Figure 3(e).
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Figure 4. Sargasso Sea biological variables, showing climatological monthly averaged (a) chlorophyll-a, (b) oxygen, (c) nitrate, (d) phos-

phate, (e) particulate organic nitrogen (PON), and (f) net primary production (NPP).

Due to the prevalence of mesoscale eddies within the BATS/BTM region (Hua et al., 1985), which can provide episodic515

upwelling of nutrients to the upper water column, we also include an additional positive upwelling vertical velocity, WE ,

which has a timescale of 15 days. The general profile of WE is assumed to be the same as for W , with a value of zero at the

surface and a maximum value at depth. However, there is no linear interpolation between each 15-day period and the maximum

magnitude of WE is randomized between 0 and 0.1 m d−1, as shown in Figure 3(f) for each 15-day period.

4.4 Initial and Boundary Conditions520

Although the BATS/BTM data includes information on many biological variables, initial conditions for only 5 of the 17 species

within BFM17 could be extracted from the data. Similarly to the temperature and salinity, the initial chlorophyll, particulate

organic nitrogen, oxygen, nitrate, and phosphate were interpolated to a mesh with 1 m vertical grid spacing, averaged over the

initial month of January, and smoothed vertically in space to give the initial profiles seen in Figure 5(a). The remaining 12 state

variable initial conditions were determined either through the adoption of the Redfield ratio C:N:P ≡ 106:16:1 (Redfield et al.,525

2005), or assuming a reasonably low initial value. Since the 1D simulations were run to steady state over 10 years, memory of

these initial states was assumed to be lost, with little effect on the results.
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Figure 5. Sargasso Sea initial and boundary conditions showing (a) initial profiles of nitrate, phosphate, particulate organic carbon, chloro-

phyll, and oxygen, where each profile, denoted φi(z), is normalized by its depth averaged value, 〈φi〉z , and (b) monthly bottom boundary

conditions for nitrate, phosphate, ammonium, and oxygen, where each quantity, ϕi(t), is normalized by its annual average value 〈ϕi〉t. The

depth and annual averaged values are shown in parentheses in the legends of each panel. Units are mmol N/m3 for nitrate, mmol P/m3 for

phosphatex, mg C/m3 for particulate organic carbon, mg Chl/m3 for chlorophyll, and mmol O/m3 for oxygen.

For the comparison of BFM17 to BFM56, the initial conditions for the additional state variables were calculated by splitting

the total phytoplankton and zooplankton carbon values into additional phytoplankton and zooplankton groups. The other state

variables for each group were again calculated using the Redfield ratio. The initial bacteria distribution was defined by setting530

the column equal to a constant value.

In both simulations, the bottom boundary conditions for oxygen, nitrate, phosphate, and ammonium species are based on

observed BATS data. For oxygen, nitrate, and phosphate, values are taken at the next closest data point below the bottom

boundary (at 150 m) and then averaged over the month. For the ammonium bottom boundary based on Eq. (73), we average

over all data points between depths of 125-150 m and 150-175 m across each month for the particulate organic nitrogen,535

compute the gradient, and then assume the ammonium exhibits a similar gradient. Figure 5(b) shows the monthly average

bottom boundary conditions for each of the four species.

5 Validation Results

The coupled BFM17-POM1D model was run using the parameter values from Tables 4-7. The empirical values were decided

on the basis of standard literature values Vichi et al. (2007, 2003, 2013) with some adjustments to improve agreement with540

observational data. The simulations were allowed to run out to steady-state and multi-year monthly means were calculated as

functions of depth for chlorophyll, oxygen, nitrate, phosphate, particulate organic nitrogen, and net primary production, each

of which were measured at the BATS/BTM site.
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Figure 6. Comparison of target BATS fields (top row) to BFM17 simulation results (middle row) and BFM56 simulation results (bottom row)

for (a,g,m) chlorophyll (mg Chl-a/m3), (b,h,n) oxygen (mmol O/m3), (c,i,o) nitrate (mmol N/m3), (d,j,p) phosphate (mmol P/m3), (e,k,q)

particulate organic nitrogen (PON - mg N/m3), (f,l,r) and net primary production (NPP - mg C/m3/day). Simulation plots are multi-year,

monthly averages of the last 3 years of a 10 year integration.

Figure 6 qualitatively compares the BATS data (top row) with the results of from BFM17 (middle row). The model is able to

capture the initial spring bloom between January and March brought on by physical entrainment of nutrients, the corresponding545

peak in net primary production and PON around the same time, and the subsequent subsurface chlorophyll maxima during the

summer. The predicted oxygen levels are lower than observed values, while nitrate and phosphate levels are generally higher

than observed values. The overall structures of oxygen, nitrate, and phosphate predicted by BFM17 are, however, quite similar

to that of the BATS target fields. These trends are consistent with the trends seen in the results from BFM56 (bottom row of

Figure 6), suggesting that the two models are in generally close agreement.550

To quantitatively evaluate BFM17, a model skill assessment was performed for each target field. The same skill assessment

was performed for BFM56 to compare the two models. The results are summarized by the Taylor diagram in Figure 7. This

diagram can be used to assess the extent of misfit between the models and observations by showing the normalized root mean
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Figure 7. Taylor diagram showing the normalized standard deviation, correlation coefficient, and normalized root mean squared differences

between the BFM17 output and the BATS target fields. Observations lie at (1,0). Radial deviations from observations corresponds to the

normalized root mean square error (RMSE), radial deviation from the origin correspond to the normalized standard deviation, and angular

deviations from the vertical axis correspond to the correlation coefficient. BFM17 and BFM56 results are shown as colored circles and

triangles, respectively (chlorophyll = blue, oxygen = orange, nitrate = yellow, phosphate = purple, PON = green, NPP = cyan).

square (RMS) errors, normalized standard deviation, and the correlation coefficient between each of the model outputs and the

BATS target fields.555

The normalized RMS errors were calculated as εrms/σobs, where εrms is the RMS error between the model and the obser-

vation fields and σobs is the standard deviation of the observation field. The normalized standard deviation was calculated as

σmod/σobs where σmod is the standard deviation of the model fields. The normalized RMS errors, normalized standard devi-

ation, and the correlation coefficients each give an indication of the relative similarities in amplitude, variations in amplitude,

and structure of each modeled field compared to the BATS target fields, respectively. For each variable, these statistics were560

calculated over all months and all depths shown in Figure 6.

The Taylor diagram in Figure 7 shows that BFM17 and BFM56 produce similar results. For all variables except oxygen,

errors in the amplitudes are within roughly one standard deviation of the observations. Additionally, the structure of the model

fields for chlorophyll, nitrate, phosphate, PON, and NPP have high correlations with that of the BATS target fields. The corre-

lation values range from 0.62 for chlorophyll to 0.95 for NPP in BFM17 and from 0.60 for chlorophyll to 0.93 for phosphate565

in BFM56. The variability in amplitude for chlorophyll, nitrate, and phosphate are closest to that of the corresponding BATS

target fields, while the oxygen and NPP have a relative lack of variability, and PON has too much variability.

27

https://doi.org/10.5194/gmd-2020-134
Preprint. Discussion started: 13 July 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 8. Correlation coefficients (and RMS error in parenthesis) between BATS target fields and model data for BFM17, BFM56, and several

example reduced-order models.

Variable BFM17 BFM56 Ayata et al. (2013) Fasham et al. (1990) Spitz et al. (2001)

Chlorophyll 0.62 (0.08) 0.60 (0.10) 0.60 (0.06) -0.33 (0.34) 0.86 (0.04)

Oxygen 0.37 (29.59) 0.23 (22.43) - - -

Nitrate 0.90 (1.47) 0.86 (1.51) 0.80 (0.33) 0.87 (0.28) 0.98 (0.05)

Phosphate 0.90 (0.01) 0.93 (0.01) - - -

PON 0.89 (0.10) 0.84 (0.11) 0.45 (0.08) 0.48 (0.6) 0.76 (0.12)

NPP 0.95 (0.43) 0.85 (0.63) 0.50 (0.14) -0.47 (0.021) 0.69 (0.016)

Table 8 provides a comparison of correlation coefficients and un-normalized RMS errors from BFM17 and BFM56, as

well as from other models. Comparisons were only made to models that were calibrated using the same BATS/BTM data,

employed some kind of parameter estimation technique, were forced with a similar one-dimensional physical model, and570

reported correlation and RMS errors. Ayata et al. (2013) contained six biological tracers, while both Fasham et al. (1990) and

Spitz et al. (2001) contained seven. The Spitz et al. (2001) study used data assimilation, while the Ayata et al. (2013) and

Fasham et al. (1990) studies used only optimization to determine a select set of parameters.

Table 8 shows that BFM17 and BFM56 give comparable results, with BFM17 producing similar correlation coefficients and

RMS error values to those from BFM56. The largest differences compared to the BATS data for both BFM17 and BFM56 are575

in the oxygen values. The overall slightly better agreement of BFM17 with the BATS data results from the adjustment of some

model parameters in BFM17 due to the removal of specific phytoplankton and zooplankton species in favor of general LFGs,

and to the parameterization of remineralization using new closure terms that were calibrated to give reasonable agreement with

the observational data. By contrast, BFM56 was run using the baseline parameter values that were not adjusted to improve

agreement with the observations.580

The correlation coefficients and RMS errors for both BFM17 and BFM56 are also comparable with the Ayata et al. (2013)

and Fasham et al. (1990) studies for chlorophyll and nitrate, while out-performing these studies for PON and NPP. The Spitz

et al. (2001) study, which used data assimilation and is therefore naturally more likely to perform better, does in fact do so for

predictions of chlorophyll and nitrate. However, the nitrate correlation values for BFM17 and the Spitz et al. (2001) model are

both high, although the latter model does have a lower RMS error value. As compared to the Spitz et al. (2001) model, BFM17585

has higher correlation values for both PON and NPP, but a larger RMS error for NPP.

These results show that, with a relatively small increase in the number of biological tracers as compared to similar models,

BFM17 is generally able to increase correlation coefficient values and decrease RMS error values for each target field in

comparison to similar models. Moreover, BFM17 approaches the accuracy of models that use data assimilation to improve

agreement with the observations, such as the Spitz et al. (2001) model. The extra biological tracers in BFM17, as compared to590

the Ayata et al. (2013) and Fasham et al. (1990) models, account for variable intra- and extra-cellular nutrient ratios with the

addition of phosphorus
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Figure 8. Fields of BFM17 constituent component ratios of carbon to nitrogen (top row), carbon to phosphorous (middle row), and nitrogen

to phosphorous (bottom row) for phytoplankton (first column), dissolved organic detritus (second column), and particulate organic detritus

(third column). Each field is normalized by the respective Redfield ratio.

Finally, a key benefit of the chemical functional family approach used by BFM17 is the ability of the model to predict

non-Redfield nutrient ratios. Figure 8 shows the constituent component ratios normalized by the respective Redfield ratios for

BFM17. The figure includes the component ratios of carbon to nitrogen, carbon to phosphorous, and nitrogen to phospho-595

rous for phytoplankton, DOM, and POM. Zooplankton nutrient ratios were not included because the parameterization of the

zooplankton relaxes the nutrient ratio back to a constant value. The normalized ratio values are uniform non-unity valued fields.

Ultimately, Figure 8 shows that BFM17 is able to capture the phosphate-limited dynamics that characterize the BATS/BTM

region (Fanning, 1992; Michaels et al., 1993; Cavender-Bares et al., 2001; Steinberg et al., 2001; Ammerman et al., 2003;

Martiny et al., 2013; Singh et al., 2015). In particular, Figure 8 shows that all results comparing carbon or nitrogen to phos-600

phorous for BFM17 produce normalized vales greater than 1, where the normalization is carried out using the Redfield ratio

(i.e., a normalized value greater than 1 indicates that the field is denominator limited). Figure 8 also shows that the ratios are
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not uniform for phytoplankton, DOM, and POM, with the ratios decreasing with depth as a result of the increased availability

of nitrogen and phosphate.

6 Conclusions605

In this study, we have presented a new reduced-order BGC model that is complex enough to capture open-ocean ecosystem

dynamics within the Sargasso Sea region, yet reduced enough to integrate with a physical model with limited additional

computational cost. The new model, named the Biogeochemical Flux Model 17 (BFM17) includes 17 state variables and

expands upon more reduced BGC models by incorporating a phosphate equation, as well as the ability to track variable intra-

and extra-cellular nutrient ratios.610

To calibrate and test the model, it was coupled to the one-dimensional Princeton Ocean Model (POM-1D) and forced using

field data from the Bermuda Atlantic test site area. The full 56 state variable Biogeochemical Flux Model (BFM56) was also

run using the same forcing. Results were compared between the two models and all six of the BATS target fields—chlorophyll,

oxygen, nitrate, phosphate, PON, and NPP—and a model skill assessment was performed, concluding that the BFM17 does

well at reproducing observations and produces comparable results to BFM56. In comparison with similar studies using slightly615

less complex models, BFM17-POM1D performs on par with, or better than, those studies.

In the future, a sensitivity study is necessary to assess the most sensitive model parameters, both in BFM17 as well as in the

1D physical model. After identification of these most sensitive model parameters, an optimization can be performed to reduce

discrepancies between the BATS observation biology fields and the corresponding model output fields. Finally, BFM17 is now

of a size that it can be efficiently integrated in a large-scale LES, and future work will examine model results in 3D simulations620

of the upper ocean.

Code and data availability. Current versions of BFM17 and BFM56 are at https://github.com/marco-zavatarelli/BFM17-56/tree/BFM17-56

under the GNU General Public License version 3. The exact versions of the models used to produce the results used in this paper are archived

on Zenodo at http://doi.org/10.5281/zenodo.3839984. Data and scripts used to produce all figures in this paper are archived on Zenodo at

http://doi.org/10.5281/zenodo.3840562.625
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